Tree Basis in Banach spaces
نویسندگان
چکیده
Tree basis in Banachs spaces, which are Schauder basis spaces with nice “tree projections”, which is a property strictly between conditional and unconditional basis, are classified. Stronger basis properties like symmetric, and subsymmetric have weaker tree versions as well. These bases are motivated by well known adaptive approximation algoritms.
منابع مشابه
A Characterization of Subspaces and Quotients of Reflexive Banach Spaces with Unconditional Basis
We prove that the dual or any quotient of a separable reflexive Banach space with the unconditional tree property has the unconditional tree property. Then we prove that a separable reflexive Banach space with the unconditional tree property embeds into a reflexive Banach space with an unconditional basis. This solves several long standing open problems. In particular, it yields that a quotient...
متن کاملA Characterization of Subspaces and Quotients of Reflexive Banach Spaces with Unconditional Bases
We prove that the dual or any quotient of a separable reflexive Banach space with the unconditional tree property has the unconditional tree property. This is used to prove that a separable reflexive Banach space with the unconditional tree property embeds into a reflexive Banach space with an unconditional basis. This solves several long standing open problems. In particular, it yields that a ...
متن کاملSubspaces and Quotients of Banach Spaces with Shrinking Unconditional Bases
The main result is that a separable Banach space with the weak∗ unconditional tree property is isomorphic to a subspace as well as a quotient of a Banach space with a shrinking unconditional basis. A consequence of this is that a Banach space is isomorphic to a subspace of a space with an unconditional basis iff it is isomorphic to a quotient of a space with an unconditional basis, which solves...
متن کاملTrees and Branches in Banach Spaces
An infinite dimensional notion of asymptotic structure is considered. This notion is developed in terms of trees and branches on Banach spaces. Every countably infinite countably branching tree T of a certain type on a space X is presumed to have a branch with some property. It is shown that then X can be embedded into a space with an FDD (Ei) so that all normalized sequences in X which are alm...
متن کاملMetrical Characterization of Super-reflexivity and Linear Type of Banach Spaces
We prove that a Banach space X is not super-reflexive if and only if the hyperbolic infinite tree embeds metrically into X. We improve one implication of J.Bourgain’s result who gave a metrical characterization of super-reflexivity in Banach spaces in terms of uniforms embeddings of the finite trees. A characterization of the linear type for Banach spaces is given using the embedding of the inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006